
www.manaraa.com

Ranking Function Optimization For Effective Web
Search By Genetic Programming: An Empirical

Study
Weiguo Fan∗, Michael D. Gordon†, Praveen Pathak‡, Wensi Xi§ and Edward A. Fox¶

∗Department of Accounting and Information Systems, Virginia Tech
3007 Pamplin, Blacksburg, VA 24061

Email: wfan@vt.edu. Tel: 540-231-6588
† Department of Computer Information Systems, University of Michigan

701 Tappan St, Ann Arbor, MI 48109
Email: mdgordon@umich.edu

‡Decision & Information Sciences Department, University of Florida
PO Box 117169, Gainesville FL 32611

Email: Praveen@ufl.edu
§Department of Computer Science, Virginia Tech

Blacksburg, VA 24061
Email: xwensi@vt.edu

¶Dept. of Computer Science, 660 McBryde Hall, M/C 0106, Virginia Tech
Blacksburg, VA 24061

Email: fox@vt.edu

Abstract— Web search engines have become indispensable
in our daily life to help us find the information we need.
Although search engines are very fast in search response time,
their effectiveness in finding useful and relevant documents
at the top of the search hit list needs to be improved. In this
paper, we report our experience applying Genetic Programming
(GP) to the ranking function discovery problem leveraging the
structural information of HTML documents. Our empirical
experiments using the web track data from recent TREC
conferences show that we can discover better ranking functions
than existing well-known ranking strategies from IR, such as
Okapi, Ptfidf. The performance is even comparable to those
obtained by Support Vector Machine.

I. INTRODUCTION

Finding information on the Internet using web search
engines, like Google, Yahoo, Teoma, AltaVista, is
one of the top three Internet activities according to
searchenginewatch.com. This fact clearly exemplifies the
importance of search engines in our daily life. However,
our experiences with these search engines show that their
capability of getting back useful and relevant results are
not always very satisfactory. We often have to refine the
search query multiple times and scan through a long
list of documents to find only a few of them relevant.
Evaluation studies in [1] show that the current state-of-
the-art search engines have not done a good job in helping
user get relevant results. In fact, current search engines,
such as Google, Teoma, are very effective in certain types
of queries, such as name finding, homepage finding, or
finding a popular topic, but not very effective for a generic

and comprehensive search task where a user’s query is
about a specific topic. Their performance results in terms
of precision and recall remain to be improved.

A search engine’s performance can be affected by many
factors: query representation, indexing, controlled vocab-
ulary, stemming, stopping words, etc. [2]. But ultimately,
it is affected by the ranking function, which is used to
rank documents according to its match with a user’s query.
There are varieties of ranking functions available for web
search:

• Content-based ranking
These ranking functions come mainly from the tra-
ditional information retrieval fields, such as Okapi
[3], Pivoted TFIDF [4]. These ranking function make
extensive usage of many lexical/syntactical statistics
of words in a document collection — tf, df, document
length, etc. — for ranking purposes.

• Link-based ranking
Link-based ranking functions utilize web intercon-
nection information to help boost the ranking perfor-
mance. Two of the most successful ranking functions
are PageRank [5], HITS [6]. These link-based rank-
ing functions are especially useful to identify those
authoritative pages, which are highly endorsed by
others, on popular topics.

• Structure-based ranking
These types of ranking functions are commonly used
by commercial search engines. They assign weights

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 1

www.manaraa.com

to words appearing in different structural position,
such as Title, Header, Anchor and use those weighting
heuristics to improve ranking performance.

Of course, there are other ranking functions that seek to
combine all the above different evidence at the content,
link, and structure levels as evidenced in recent TREC web
track competition [7], [8]. Several interesting observations
can be made from recent TREC web track evaluations on
these ranking functions:

• Using link information does not provide much help
in performance improvement as compared to using
content alone.

• Ranking functions based on content alone are still
very successful. For example, one of the most suc-
cessful ranking functions based on content only —
Okapi — were found still very successful in web track
evaluations [7], [8].

To further test the effects of ranking functions on search
performance in a controlled setting, we did a comparative
study on three content-based ranking functions — Okapi,
Ptfidf, and Inquery. These three ranking functions are well-
known in information retrieval field. Details of these three
ranking functions can be found in [4]. We apply these
ranking functions to the 10GB web data using the 50
queries from TREC 10. We summarize the performance
results in Table I. As can be seen from Table I, there

TABLE I

PERFORMANCE COMPARISON OF THREE RANKING FUNCTIONS ON

WEB DATA. THE THREE RANKING FUNCTIONS CAN BE FOUND IN [4].

THE PERFORMANCE MEASURES ARE STANDARD TREC MEASURES

DESCRIBED IN MORE DETAILS IN THE EXPERIMENT SECTION OF THIS

PAPER.

P Avg R P T Rel Ret P10
Okapi (Title+Body) 0.2002 0.2463 2416 0.3760
Okapi (Body) 0.1981 0.2482 2400 0.3760
Ptfidf (Body) 0.1429 0.2039 1930 0.3120
Inquery (Body) 0.1305 0.1994 1714 0.3380

is a very wide variance in terms of ranking performance
from the three ranking functions we compared. Okapi is
clear winner among the three. Moreover, the addition of
title keywords helps boost the performance for Okapi over
using Body text alone by a small margin, which indicates
that the structural information of HTML documents may
help the overall ranking performance. One thing to be
noted in Table I is that in the test of Okapi using both Title
and Body texts, we simply merge these two sets of texts
into one without treating these texts separately. Ideally,
we want to apply different weighting schemes (tf*idf, tf,
etc.) to different document structures and use one final
formula to combine all the weights together. The current
Okapi, Ptfidf, and Inquery formulas do not support that
since they do not consider the structural information at all
in their ranking.

This brings up our research question in this paper:
How can we design or discover a better ranking
function for web-based information retrieval by
effectively leveraging both content and structure
information of web documents?

To answer this question, we design a novel ranking func-
tion discovery framework for web context based on our
prior work on ranking function discovery on unstructured
data [9], [10], [11]. This new framework differs from our
previous work in that our earlier work on ranking function
discovery does not make use of any structural information
such as Title, Anchor, Body, Abstract, as does in the cur-
rent framework. In fact, the new framework is a superset of
the previous one and can be used for both structured/semi-
structured and unstructured documents, while the previous
framework can only be applied to unstructured ones.
Moreover, we follow a new experimental design strategy
in this paper. That is, we are going to optimize the ranking
function for a group of queries instead of individual queries
as in our previous work. In this regard, this work can be
classified as the consensus ranking function discovery for
web search [12].

Our paper is organized as follows. In section 2, we de-
scribe the required background information on our theoret-
ical foundation — Vector Space Model — for information
retrieval. In Section 3, we present our new ranking function
discovery framework for web search context using both
the content and structural information. We conduct two
experiments to evaluate this framework and summarize the
experimental findings in Section 4. Section 5 discusses the
related works to this study and Section 6 concludes this
paper and point out future research directions.

II. BACKGROUND AND THEORETICAL FOUNDATION

As we mentioned earlier, the objective of a ranking
function is to match documents or information to a user’s
query and place them in descending order of their predicted
relevance to a user’s information requirement.

To facilitate this relevance estimation process, both these
documents and a user’s information need to be transformed
into a form that can be effectively processed by computers.
One of the most successful models is the so-called Vector
Space Model (VSM) [13], [14].

The VSM is chosen to be the theoretical foundation for
this study for two reasons:

1) Ease of interpretation
The VSM is a theoretically well-grounded model.
It is based on Vector Space and thus can be easily
interpreted from a geometric perspective [15], [14].
For example, each document and query vector can
be placed in an Euclidean n dimensional space.
The properties of these two vectors, such as their
similarity and closeness, can then be studied.

2) Great success in performance evaluations
The VSM has been one of the most successful
models in various performance evaluation studies

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 2

www.manaraa.com

[16], [17], [13], [18]. Most existing search engines
and information retrieval systems are designed based
on this model.

More specifically, both documents and user queries are
represented as vectors in the VSM. Suppose there are total
t index terms in an entire collection, a given document D
and query Q can be represented as follows:

D = (wd1, wd2, wd3, . . . , wdt)
Q = (wq1, wq2, wq3, · · · , wqt)

where wdi, wqi (i=1 to t) are term weights assigned to
different terms for the document D and query Q respec-
tively. The similarity between a query and a document can
be calculated by the widely used Cosine measure [18]:

Similarity(Q,D) =

t∑
i=1

wqi × wdi√
t∑

i=1

(wqi)2 ×
t∑

i=1

(wdi)2
(1)

Documents are then ordered by decreasing values of this
measure.

There are various features (weighting evidence1) avail-
able in the Vector Space model to compute the term
weights — wdi, wqi (i=1 to t). One of the most widely
used features for term weighting is Term Frequency (TF),
which measures the number of times a term appears in
a document or query. Another commonly used feature,
measuring the rarity of a term in a collection, is the Inverse
Document Frequency (IDF) which can be calculated by
log(N/DF), where N is the total number of documents in
a text collection, and DF is another feature that measures
the number of documents in which a term has appeared
in an entire document collection. More features used in
term weighting can be found in [18], [14]. These features
can also be combined to generate a wide range of new
composite weighting features, e.g., TF*IDF, etc.

Note that the normalization factor in the denominator
of Equation (1) is often omitted in calculation for perfor-
mance reasons. In this case, the Cosine measure is replaced
by the inner dot product, which can be represented as
follows:

Similarity(Q,D) =
t∑

i=1

wqi × wdi (2)

Because of the duality of the model between wqi and
wdi shown in Equation 2, if we merge wqi into wdi and
set wqi = 1, Equation 2 can be further reduced to

Similarity(Q,D) =
∑
i∈Q

wdi (3)

where Q is the set of keywords used in a user query.

1We use features and evidence interchangeably in this paper.

Equation 3 basically tells us that in order to discover
a good ranking function, we need to discover the op-
timal way of assigning weights to document keywords.
In traditional VSM, though, wdi is not designed to take
consideration of the structural information. Instead, it
focuses on the functional space of the combination of a
set of weighting features, such as tf , df , idf , etc. as we
mentioned above. If we qualify these weighting features
to include the structural/positional information such as
Anchor, Title, Abstract (the top 50 words in <Body> part
of a HTML document), and Body, we get an expanded set
of features including tfanchor, tftitle, tfabstract, tfbody.
The theoretical foundation serving Equation 3 can still be
applied to the structural context.

We use Equation 3 as the theoretical foundation for this
paper. We will seek to discover new ways of leveraging
structural information in assigning weights to documents
terms to improve the overall ranking performance.

III. A RANKING FUNCTION DISCOVERY

METHODOLOGY BASED ON GENETIC PROGRAMMING

(GP)

In this Section, we propose genetic programming (GP)
to study the problem of ranking function discovery in a
web search context. This approach will help us automate
the ranking function design by effectively leveraging both
content and structure information embedded in HTML
documents. We do not consider link information in this
study2. We focus our discussion on Vector Space Model
only since it is one of the most popular and successful
models in IR as mentioned in the theoretical background
Section. We begin with a brief introduction to the learning
technique — Genetic Programming and its key com-
ponents, then we present the detailed ranking function
discovery framework.

Genetic Programming (GP), an extension of Genetic
Algorithms (GAs), is an inductive learning3 technique
designed following the principles of biological inheritance
and evolution [19]. In GP, each potential solution is called
an individual in a population. An individual in GP systems
is typically represented using a tree structure as shown in
Figure 1.

GP works by iteratively applying genetic transforma-
tions, such as reproduction, crossover, mutation, to a
population of individuals to create more diverse and better
performing individuals in subsequent generations. Both GP
and GA have been applied to information retrieval field
[20], [9], [21], [22], [23], [24], [25].

In order to apply GP to the problem of ranking function
discovery, several required key components of a GP system
need to be defined. Table II lists these essential components
along with their descriptions.

2It is not very difficult to combine our discovered ranking function
with link-based evidence using probabilistic framework. We leave this
for future research.

3learning and generalization from specific examples

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 3

www.manaraa.com

+

x

*

x

x

+

yx

+

y

Fig. 1. A sample tree representation for a ranking function

TABLE II

ESSENTIAL GP COMPONENTS.

Components Meaning
Terminals Leaf nodes in the tree structure. i.e. x, y as in

Figure 1.
Functions Non-leaf nodes used to combine the leaf nodes.

Commonly numerical.
operations: +, -, *, /

Fitness function The objective function GP aims to optimize.
Reproduction A genetic operator that copies the individuals

with the best fitness.
values directly into the population of the next
generation without going through the crossover
operation.

Crossover A genetic operator that exchanges sub-trees
from two parents to form two new children.
Its aim is to improve the diversity as well
as the genetic fitness of the population.
This process is shown
in Figure 2.

(x+x)*(y*x)

(x+x)*(x+y)

+

x

+

x

*

+

xx

*

+

xx

*

+

*

+

xx

+

x

+

x

CrossoverCrossover

P1 P2

C1
C2

(x+y)+x

(y*x)+x

xy

*

xy

*

xy

*

x

+

yx

+

y

xy

*

xy

*

xy

*

x

+

yx

+

y xy

*

xy

*

Gen:K

Gen:k+1

x

+

yx

+

y

Fig. 2. A graphical illustration of the crossover operation

We set up the configurations of the GP system used for
ranking function discovery as shown in Table III.

TABLE III

MODELING SETUP FOR RANKING FUNCTION DISCOVERY BY GP.

REFER TO TABLE II FOR EXPLANATIONS OF THE VARIOUS

COMPONENTS.

Terminals We use features shown in Table IV as terminals.
Functions +, ×, /, log
Fitness function The average of p avg for m queries, where p avg

is defined as

p avg =
TRel∑
i=1

Pi/TRel, Pi = i/Ranki

for each query, TRel is the total number of
relevant documents for a given query, Ranki

is the ranking position for the ith relevant
document.

Genetic operator Reproduction, Crossover

TABLE IV

TERMINALS USED IN OUR GP SYSTEM. X IS USED TO STAND FOR

DIFFERENT PARTS OF A HTML DOCUMENT: ENTIRE DOCUMENT

(DOC), ANCHOR, TITLE, BODY, ABSTRACT.

Terminals Statistical Meaning
tf X The number of times a term appeared in the

part X of a document
tf max X The maximum tf in the part X of a document
tf avg X The average tf in the part X of a document
tf max X Col The maximum tf X in the entire document

collection
df X The number of unique Xs a term appeared in

a collection
df max X The maximum df X for a given query
N The total number of documents in the entire

text collection
length X The length of a document part X
length avg X Col The average length of part X in

the entire collection
R A real constant number randomly generated

by the GP system
n The number of unique terms in a document

With the above settings, the overall ranking function
discovery framework is shown in Figure 3. Note that the
framework described in Figure 3 differs from our previous
one [9], [10], [11] in that

a) Compared to [11], we use a much larger set of
terminals (features) so we can leverage structural
information.

b) The fitness evaluation of each ranking tree is done at
the level of multiple queries. In other words, we ap-
ply a ranking tree to multiple queries simultaneously
and calculate the fitness value using the aggregated
performance for all queries. In our previous work
[9], [10], this was done at the individual query level.
Thus the work reported in [9], [10] is more suitable
for query-specific ranking or personal ranking [12].
The work reported in this paper is more suitable for
ad-hoc information retrieval, or consensus ranking
[12].

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 4

www.manaraa.com

1. Generate an initial population of random
“ranking trees”;

2. Perform the following sub-steps on training
documents for Ngen generations
2.1 Use each ranking tree to score and rank

the collection separately for multiple
queries

2.2 Calculate the fitness of each ranking tree
2.3 Record the top Ntop ranking trees
2.4 Create new population by:

a) Reproduction
b) Crossover

3. Apply the recorded (Ngen × Ntop) candidate
”ranking trees” on a set of validation documents
and select the best performing tree as the unique
discovery output

Fig. 3. Overall Ranking Function Discovery Framework. Ngen and
Ntop are user-specified parameters.

IV. EXPERIMENTS

We conduct two experiments to test the viability of
the new ranking function discovery framework in the web
search context. The first experiment is to use user-provided
queries to see whether we can discover a better ranking
function for ad-hoc information retrieval in general. This
corresponds to the web search scenario where the search
queries are very short (typically 2-4 words in a user
query) [26]. The second experiment is to use relevance
feedback queries (constructed automatically from the train-
ing collection with relevance judgment) to see whether
the same framework can be applied in a context where
users’ information needs are more fully and accurately
represented. The combination of these two experiments
should provide us with insights about the capability of the
GP-based discovery framework.

A. Data

For both experiments, we use the standard 10GB Web
Track collection from recent TREC 9 and TREC 10
conferences [7], [8]. The same collection has been used
extensively to evaluate various web-based information re-
trieval systems. Because our framework utilizes machine
learning techniques, we use the residual collection method
[14] to divide the entire data into three parts: training
(50%), validation (20%) and test data (30%). The training
data, along with the relevance information for queries are
used by the GP-based ranking function discovery frame-
work to generate a set of “candidate” consensus ranking
functions for multiple queries (Steps 1 and 2, Figure 3).
The validation data is used to choose the one that is of the
best generalization capability for new data (Step 3, Figure
3). The performance comparison of all systems are based
on the results on the test data only.

There are 100 topics provided in TREC 9 and 10 web
track. Since 12 of these queries do not have any relevant
documents in either the validation and test data set, we
exclude them and use the rest 88 queries as the test queries
for our experiments. All of these 88 queries have their
relevance information available.

B. Performance measures

Table V lists the performance measures used in this
study. All of these measures are standard performance
measures used in TREC for cross-system performance
comparison. These measures are selected to balance both
precision4 and recall5. Among the four measures, Pavg and
P10 are the primary two we focus on. Pavg is a hybrid
measure of average precision and recall [16], [17]. P10
is the measure used primarily in the web search context
to show how good a ranking system at returning relevant
documents at the top of a hit list [7], [8].

TABLE V

PERFORMANCE MEASURES AND THEIR DEFINITIONS

Measure Definition
Pavg The average of precisions every time a new relevant is

found, normalized by the total number of relevant
documents in an entire collection.
An equivalent mathematical definition can be
found in Table III.

P10 The precision in the top 10 retrieved documents
RP The precision when T Rel documents are retrieved.
TRR The total number of relevant documents retrieved for

a given query

C. Baselines

In order to demonstrate the efficacy of the ranking
functions discovered by GP, we need to compare them
with other well-known ranking functions/systems. Three
content-based ranking functions — Okapi BM25 (denoted
as Okapi), Pivoted TFIDF (denoted as Ptfidf), and Inquery
— are used as the baseline systems. The details of these
three ranking functions can be found in [4]. In addition, we
implement a classifier-based ranking scheme using Support
Vector Machine (SVM) as in [27]. This ranking scheme
uses both content and structure information of the HTML
documents and serves as a very competitive baseline to
compare against the ranking functions discovered using our
ranking function discovery framework. In order to obtain
meaningful results for comparison, we train a SVM classi-
fier for each query, and the model produced is subsequently
applied to the test data to obtain the performance result.
We repeat this step for all 88 queries. These four systems
will be used as the baselines in this study.

4The proportion of the retrieved documents that are relevant.
5The proportion of relevant documents that are retrieved.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 5

www.manaraa.com

D. Experiment 1: User-provided queries

The performance comparison results between the best
ranking functions we discovered using GP-based frame-
work (denoted GP+S) and the four baselines are sum-
marized in Table VI. Note that Column 6 provides a
comparison based on using the GP approach without
structural information.

TABLE VI

PERFORMANCE COMPARISON BETWEEN SYSTEMS FOR

USER-PROVIDED QUERIES. COLUMNS 2-7 ARE DIFFERENT RANKING

SYSTEMS. EACH ROW REPORTS THE RESULTS FOR THE

PERFORMANCE MEASURE SHOWN IN COLUMN 1. SEE TABLE V FOR

THE DEFINITION OF THESE MEASURES

Okapi Ptfidf Inquery SVM+S GP GP+S
Pavg 0.2247 0.1736 0.1749 0.2199 0.2193 0.2675
P10 0.2420 0.2080 0.2227 0.2398 0.2409 0.2841
RP 0.2432 0.1918 0.2004 0.2353 0.2343 0.2713
TRR 16.4 15.5 14.5 16.7 16.5 16.9

As can be seen from Table VI, GP+S, clearly outper-
forms all the baseline systems in all four measures. Among
the four baselines, SVM+S and Okapi perform the best.
The difference between SVM+S and Okapi are negligible.
In terms of performance improvement, GP+S outperforms
Okapi by almost 20% in Pavg, 17.4% in P10. We consider
such improvement quite significant.

Another interesting observation related to focus of this
study is the advantage of leveraging the structural infor-
mation in ranking function discovery. The performance of
the best ranking function discovered using only content
without consideration of structure (denoted as GP in Table
VI) is clearly inferior to that of the content+structure ap-
proach. This indicates that utilizing structural information
of query words in ranking function discovery is beneficial.

The best ranking function corresponding to “GP+S” in
Table VI is shown as follows:

log (tf Doc
tf max Doc ×df max Doc

df Doc

× length avg Abstract Col

tf avg Abstract
)(4)

As we can see from Formula (4), tf Doc
tf max Doc is the

well-known normalized tf in IR [14]. df max Doc
df Doc is a new

normalized IDF. length avg Abstract Col
tf avg Abstract is the structural

part of the ranking function, and can be treated as the
scaling factor for the ranking. In other words, larger tf avg
in the Abstract part (top 50 words within <Body> part)
will lead to lower ranking score.

To see how the structural part affects the ranking perfor-
mance, we drop this part and use the rest of the formula
for ranking. The performance in Pavg is down to 0.11
(from 0.2675 using the full formula). This indicates that the
structural component plays a substantial role in Formula 4
for the HTML ranking.

E. Experiment 2: Relevance feedback queries

For this experiment, we replace the user-provided
queries with feedback queries which are generated using
the RSV formula [28]. This method uses relevant doc-
uments to identify the best terms for a user’s search,
even if the user doesn’t include them in the query. We
select the top 10 words for each query as we find this
size works the best in the training collection for three
content-based ranking systems: Okapi, Ptfidf and Inquery.
The experimental results on these feedback queries are
summarized in Table VII.

TABLE VII

PERFORMANCE COMPARISON BETWEEN SYSTEMS FOR RELEVANCE

FEEDBACK QUERIES. COLUMNS 2-7 ARE DIFFERENT RANKING

SYSTEMS. EACH ROW REPORTS THE RESULTS FOR THE

PERFORMANCE MEASURE SHOWN IN COLUMN 1. SEE TABLE V FOR

THE DEFINITION OF THESE MEASURES

Okapi Ptfidf Inquery SVM+S GP GP+S
Pavg 0.4001 0.3382 0.2792 0.4059 0.4275 0.4319
P10 0.425 0.3614 0.3261 0.4102 0.4318 0.4341
RP 0.3928 0.3448 0.301 0.4153 0.4089 0.4063
TRR 17.3 16.6 15.4 17.1 17.3 17.3

If we compare Table VII with Table VI, one noticeable
difference is the huge improvement of the performance in
absolute values. The feedback queries improve the perfor-
mance of the baseline systems by 80-100%. This indicates
the inadequency of the information need representation in
the web search context.

With the highly improved baseline results using the
feedback queries, our ranking discovery framework still
works very well. The newly discovered ranking function
using both content and structure (GP+S) again outperforms
all the baseline systems and its content-only counterpart.
The improvement of GP+S over Okapi is almost 9%.

Another observation can be made with regards to Table
VII is that the advantage of using structural information
is less obvious than in Table VI. This can be seen from
the shrinking gap between GP+S with GP. One possible
explanation is that the performance gain of these feedback
queries has offset the gain in using the structural informa-
tion.

The best ranking function discovered by the ranking
discovery framework for feedback queries is shown in
Figure 4. As can be seen, this ranking function is of
much more complexity than the one shown in Formula (4)
for short queries. Some of the well-known term weight-
ing strategies such as idf – N/df Doc, normalized tf –
tf Doc/tf avg Body, are found useful in the ranking. There
are other weighting strategies that are new to us in Figure
(4)— this may be the advantage of knowledge discovery
through GP.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 6

www.manaraa.com

Log(((((tf_avg_Anchor_Col + tf_avg_Abstract_Col)* (Log(((Log((N / tf_Doc))
* df_max_Body_Col) / (tf_max_Doc / tf_max_Abstract)))
+ Log(df_max_Title_Col))) / ((tf_avg_Body / N)
* (df_Doc * (n / tf_Doc)))) + Log((Log((length_avg_Abstract_Col / tf_max_Abstract))
* ((df_max_Anchor_Col * tf_Doc) / tf_Body)))))

Fig. 4. The best ranking function discovered by GP for feedback queries

V. RELATED WORK

There have been several efforts on ranking function
optimization in IR literature.

The earliest work is done by N. Fuhr et al. [29], [30]
using probabilistic models as machine learning approaches.
The concept of relevance description used in [29], [30] is
very similar to the weighting evidence (tf , df , · · ·) we used
for ranking. An important difference between our work
from theirs is that we use a ranking function of arbitrary
numerical functional form designed from GP, while in [29],
[30], the ranking function (called retrieval function in [29],
[30]) is either a polynomial regression function [29], or
logistic regression/loglinear function [30]. Similar ideas
using logistic regression for ranking function design and
optimization have also been explored in [31].

Another line of research on ranking function optimiza-
tion is following the mixture of experts approach, in which
a set of ranking functions are combined either numerically
through linear combination [32], [33], [25], or simple ma-
jority vote [34]. The effectiveness is limited by the number
of experts (ranking functions) they used and how effective
they are individually. Our work, in fact, can produce new
ranking functions with better performances than existing
ones. These newly discovered ranking functions can be
combined using the mixture of experts approach with
other well-known ranking functions to further improve the
ranking performance.

VI. DISCUSSIONS AND FUTURE RESEARCH

In this paper, we consider the problem of consensus
ranking function discovery in the context of web search. A
framework for tackling this problem based on Genetic Pro-
gramming has been proposed and tested. Our experimental
results on two different sets of queries using a very large
web collection have demonstrated that the framework can
be used to discover better ranking functions than existing
ones. This framework can be used for optimizing ranking
functions used in search engines or digital libraries. We
also find that the structural information of query words are
especially beneficial for ranking function discovery using
short queries.

The computation time for each learning experiment
(involving 10 different independent runs using different
random seeds to improve the chances of finding optimal
solutions) took about 5 days to finish on a Linux machine
with a 1.3GHz CPU. The learning process can be further
speeded up by using multiple processors, parallel process-
ing or efficient data sampling. We consider this compu-

tation time is acceptable with the performance results we
obtained.

Our future work is to test this framework on more docu-
ment collections to see its viability. We also plan to test this
framework at the individual query level to see the structural
effects on ranking function discovery. It may be interesting
to see how the approach using logistics regression as in
[31] can fare against GP in these two learning tasks.
Finally, new terminals (features) representing additional
structural information may be explored.

REFERENCES

[1] M. Gordon and P. Pathak, “Finding information on the world wide
web: the retrieval effectiveness of search engines,” Information
Processing and Management, vol. 35, no. 2, pp. 141–180, 1999.

[2] F. W. Lancaster and A. J. Warner, Information Retrieval Today.
Information Resources Press, 1993.

[3] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and
M. Gatford, “Okapi at TREC-4,” in Proceedings of the Fourth Text
Retrieval Conference, D. K. Harman, Ed. NIST Special Publication
500-236, 1996, pp. 73–97.

[4] A. Singhal, G. Salton, M. Mitra, and C. Buckley, “Document length
normalization,” Information Processing and Management, vol. 32,
no. 5, pp. 619–633, 1996.

[5] S. Brin and L. Page, “The anatomy of a large-scale hypertextual
Web search engine,” Computer Networks and ISDN Systems,
vol. 30, no. 1–7, pp. 107–117, 1998. [Online]. Available:
citeseer.nj.nec.com/brin98anatomy.html

[6] J. M. Kleinberg, “Authoritative sources in a hyperlinked environ-
ment,” Journal of the ACM, vol. 46, no. 5, pp. 604–632, 1999. [On-
line]. Available: citeseer.nj.nec.com/kleinberg99authoritative.html

[7] D. Hawking, “Overview of the TREC-9 web track,” in Proceedings
of the Ninth Text Retrieval Conference, E. M. Voorhees and D. K.
Harman, Eds. NIST Special Publication 500-249, 2001, pp. 86–
102.

[8] D. Hawking and N. Craswell, “Overview of the TREC-2001 web
track,” in Proceedings of the Tenth Text Retrieval Conference, E. M.
Voorhees and D. K. Harman, Eds. NIST Special Publication 500-
250, 2001, pp. 61–67.

[9] W. Fan, M. D. Gordon, and P. Pathak, “Personalization of search
engine services for effective retrieval and knowledge management,”
in Proceedings of 2000 International Conference on Information
Systems (ICIS), Brisbane, Australia, 2000, pp. 20–34.

[10] ——, “Discovery of context-specific ranking functions for effective
information retrieval using genetic programming,” IEEE Transac-
tions on Knowledge and Data Engineering, 2003, in press.

[11] ——, “A generic ranking function discovery framework by genetic
programming for information retrieval,” Information Processing and
Management, 2003, in press.

[12] J. Pitkow, H. Schutze, T. Cass, R. Cooley, D. Turnbull, A. Edmonds,
E. Adar, and T. Breuel, “Personalized search,” Communications of
the ACM, vol. 45, no. 9, pp. 50–55, September 2002.

[13] G. Salton, The SMART Retrieval System: Experiments in Automatic
Document Processing. New Jersey: Prentice Hall, 1971.

[14] ——, Automatic Text Processing. Reading, MA: Addison-Wesley
Publishing Co., 1989.

[15] W. P. Jones and G. W. Furnas, “Pictures of relevance: a geometric
analysis of similarity measures,” Journal of the American Society
for Information Science, vol. 38, no. 6, pp. 420–442, 1987.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 7

www.manaraa.com

[16] D. K. Harman, “Overview of the first text retrieval conference
(TREC-1),” in Proceedings of the First Text Retrieval Conference,
D. K. Harman, Ed. NIST Special Publication 500-207, 1993, pp.
1–20.

[17] ——, “Overview of the fourth text retrieval conference (TREC-
4),” in Proceedings of the Fourth Text Retrieval Conference, D. K.
Harman, Ed. NIST Special Publication 500-236, 1996, pp. 1–24.

[18] G. Salton and C. Buckley, “Term weighting approaches in automatic
text retrieval,” Information Processing and Management, vol. 24,
no. 5, pp. 513–523, 1988.

[19] J. R. Koza, Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. Cambridge, MA, USA: MIT
Press, 1992.

[20] H. Chen, Y. Chung, M. Ramsey, and C. Yang, “A smart itsy bitsy
spider for the web,” Journal of the American Society for Information
Science, vol. 49, no. 7, pp. 604–618, 1998.

[21] M. Gordon, “Probabilistic and genetic algorithms for document
retrieval,” Communications of ACM, vol. 31, no. 2, pp. 152–169,
1988.

[22] ——, “User-based document clustering by redescribing subject
descriptions with a genetic algorithm,” Journal of the American
Society for Information Science, vol. 42, no. 5, pp. 311–322, 1991.

[23] V. V. Raghavan and B. Agarwal, “Optimal determination of user-
oriented clusters: An application for the reproductive plan,” in
Proceedings of the Second International Conference on Genetic
Algorithms and Their Applications, Cambridge, MA, 1987, pp. 241–
246.

[24] M. J. Martin-Bautista, M. Vila, and H. L. Larsen, “A fuzzy genetic
algorithm approach to an adaptive information retrieval agent,”
Journal of the American Society for Information Science, vol. 50,
no. 9, pp. 760–771, 1999.

[25] P. Pathak, M. Gordon, and W. Fan, “Effective information retrieval
using genetic algorithms based matching function adaptation,” in
Proceedings of the 33rd Hawaii International Conference on System
Science (HICSS), Hawaii, USA, 2000.

[26] B. J. Jansen, A. Spink, and T. Saracevic, “Real life, real users,
and real needs: a study and analysis of user queries on the web,”
Information Processing and Management, vol. 36, no. 2, pp. 207–
227, 2000.

[27] A. Sun, E.-P. Lim, and W.-K. Ng, “Web classification using support
vector machine,” in Proceedings of the fourth international work-
shop on Web information and data management. ACM Press,
2002, pp. 96–99.

[28] S. Robertson and K. S. Jones, “Relevance weighting of search
terms,” Journal of the American Society for Information Science,
vol. 27, pp. 129–146, 1976, reprinted in: P. Willett (ed.), Document
Retrieval Systems. Taylor Graham, 1988. (pp 143-160).

[29] N. Fuhr and C. Buckley, “A probabilistic learning approach
for document indexing,” ACM Transactions on Information
Systems, vol. 9, no. 3, pp. 223–248, 1991. [Online]. Available:
citeseer.nj.nec.com/fuhr91probabilistic.html

[30] N. Fuhr and U. Pfeifer, “Probabilistic information retrieval as
combination of abstraction, inductive learning and probabilistic
assumptions,” ACM Transactions on Information Systems,
vol. 12, no. 1, pp. 92–115, 1994. [Online]. Available:
citeseer.nj.nec.com/fuhr94probabilistic.html

[31] F. C. Gey, “Inferring probability of relevance using the method of
logistic regression,” in the Proceedings of Seventeenth Annual In-
ternational ACM SIGIR Conference on Research and Development
in Information Retrieval, 1994, pp. 222–231.

[32] B. T. Bartell, G. W. Cottrell, and R. K. Belew,
“Automatic combination of multiple ranked retrieval systems,”
in the Proceedings of Seventeenth Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 1994, pp. 173–181. [Online]. Available:
citeseer.nj.nec.com/bartell94automatic.html

[33] C. C. Vogt and G. W. Cottrell, “Fusion via a linear combination of
scores,” Information Retrieval, vol. 1, no. 3, pp. 151–173, 1999.

[34] J. H. Lee, “Analyses of multiple evidence combination,” in the Pro-
ceedings of Twentieth Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, 1997, pp.
267–276.

Proceedings of the 37th Hawaii International Conference on System Sciences - 2004

0-7695-2056-1/04 $17.00 (C) 2004 IEEE 8

